regl.org

Towards a Semi-Formal,
Open and Scalable
Requirements Modeling Tool

Bjorn Regnell
cs.lth.se/bjornregnell

LundUniversity.lu.se




var myRequirements = Model( ??? )



Good enough Requirements?

111 —

Quality Time



3 software engineering trends

e Decentralize, Distribute, Document less
— Agile teams
— No centrally controlled, detailed "master plan”
— Continuous integration & deployment
— Increased parallelization
— Distributed Version Control, e.g. Git
— "Code is king"



> 1s challenge:

How to help
code-focused, agile

software engineers
to do good

requirements engineering?



Provide an interesting tool that is...

Semi-
formal

Open

Scalable

Use graph structures
Mix Natural Language (NL)
with RE semantics

Free, permissive license
Cross-platform: JVM

Internal DSL in Scala
http://www.scala-lang.org/

Graphs are well-known by software
engineers and powerful for expressing
structure and flexible for search.

NL is well-known and powerful...

Allow integration of existing code bases
Enable academic usage and contribution

Open-ended language
Scala is scalable, powerful, concise,
typesafe, scriptable, ...



Requirements == Code

e Requirements as computational entities
e Serialize as self-generating code

e Flexible meta-model and semantics:
> warn, don't force



Requirements modelling in reqT

A regT model includes sequences of graph parts

<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model( )

Model (
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("fl1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1") assigns(Prio(1l)) to Feature("f2")

)



Requirements modelling in reqT

A regT model includes sequences of graph parts

<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model( )

Model (
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1l") assigns(Prio(1l)) to Feature("f2")

)



Implied reqT graph structure

Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)
requires
Feature
( n _F3 n )
requires
Feature Feature
(ll_Flll) (ll_lel)
..... has
has "“" e
K Status

Spec

assigns(Prio(1))

Stakeholder("s1")




reqT-v2.2 metamodel NN

Model

A

m Key(Entity, Edge)

A

) NodeSet(Node, Node, ...)
Attribute[T](value: T)
A

— Gist(String) AttributeEdge has
o : — T ovs
L Goal L Product —| Status(Level) [ requires
H Feature — Release — Why(String) | |
Trigger(String) excludes
1 Function — Stakeholder| [ Example(String) ||
4_[ Class Precond(String) helps
- Data — Actor — Input(String) L hurt
oual Member Frequency(String) urs
1 Quality B — Output(String) [ Drecedes
— UserStory Critical(String) P
] 'nterrace N — Prio(Int) — inherits
Desi UseCase Problem(String)
cogn Task —| Label(String) — deprecates
- Scenario L _ Comment(String)
| [VividScenario —| Image(String) — assigns(Attribute)
Deprecated(String)




up

Status(value: Level) RELEASED

up

scala> val s = Status.init

s: reqT.Status = TESTED
Status(ELICITED) up

down

scala> s.up
resl: reqT.Status
Status(SPECIFIED)

IMPLEMENTED

up

scala> s.down
res2: reqT.Status
Status(DROPPED) up

PLANNED

VALIDATED ]

down POSTPONED

1n1t SPECIFIED

up
down
ELICITED J down DROPPED .down




reqT Task description example

Model(
Task("reception work") owns (Task("check in"), Task("booking")),

Task("check in") has (
Why("Give guest a room. Mark it as occupied. Start account."),
Trigger("A guest arrives"),
Frequency("Average 0.5 checkins/room/day"),
Critical("Group tour with 50 guests.")
)>
Task("check in") owns (
Task("find room"), Task("record guest"), Task("deliver key")),

Task("record guest") has Spec(
"variants: a) Guest has booked in advance, b) No suitable room"

[Example modified from Lauesen: "Software Requirements — Styles and Techniques"]



Features of reqT-v2.2 publ. @ REFSQ13

2nd generation of DSL based on student feedback
Deep integration with Scala collections

A rich set of operators and methods for:

— extracting models parts (restrict, exclude, DFS, ...)
— finding elements of models

— updating and analyzing models

Import/Export

— tabsep for integration with spreadsheet programs
— template-based HTML requirements doc generator



Features of reqT-v2.3

e New experimental features in v2.3-RC1
— Constraints on models, inside models
— Integration with constraint solver JaCoP
e prioritization
* release planning
— "Deep models" using recursive structures
e Submodel as attribute of any entity

e Modularization of models in subdomains
* ModelVector, ModelFiles

— Executable test cases as requirements in models



Themes planned for future releases

GUI Editor & Visualizer
GUI for Prioritization & Release Planning

NLP Support
Git Integration & History Analyzer
Semantic checks as plugins



Interested in trying out or
contributing to reqT.org?

Download at http://reqT.org

Contact bjorn.regnell@cs.lth.se
Clone https://github.com/reqT/reqT
Pull-requests are welcome!

Seeking strategic partnerships
with research groups that have

competence in e.g.
NLP, PLE, SPM, GORE, ...




