
reqT.org
Towards a Semi-Formal,
Open and Scalable
Requirements Modeling Tool

Björn Regnell
cs.lth.se/bjornregnell
LundUniversity.lu.se

Quality Time

Good enough Requirements?

3 software engineering trends

• Decentralize, Distribute, Document less
– Agile teams
– No centrally controlled, detailed "master plan"
– Continuous integration & deployment
– Increased parallelization
– Distributed Version Control, e.g. Git
– "Code is king"

> ls challenge:

How to help
code-focused, agile
software engineers
to do good
requirements engineering?

Provide an interesting tool that is...
Goal Design Rationale

Semi-
formal

• Use graph structures
• Mix Natural Language (NL)

with RE semantics

• Graphs are well-known by software
engineers and powerful for expressing
structure and flexible for search.

• NL is well-known and powerful...

Open • Free, permissive license
• Cross-platform: JVM

• Allow integration of existing code bases
• Enable academic usage and contribution

Scalable • Internal DSL in Scala
http://www.scala-lang.org/

• Open-ended language
• Scala is scalable, powerful, concise,

typesafe, scriptable, ...

Requirements == Code

• Requirements as computational entities
• Serialize as self-generating code
• Flexible meta-model and semantics:

> warn, don't force

Requirements modelling in reqT
A reqT model includes sequences of graph parts
<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model()

Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Requirements modelling in reqT
A reqT model includes sequences of graph parts
<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model()

Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Implied reqT graph structure

Feature
("f1")

Feature
("f2")

requires

Stakeholder("s1")

assigns(Prio(1))

Feature
("f3")

requires

Status
Spec

has

has

Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

reqT-v2.2 metamodel Element

Concept Structure

Node

Entity(id: String)

Context

Product

Release

Stakeholder

Requirement

Feature

UserStory

Goal

Attribute[T](value: T)

Edge

AttributeEdge

Relation

has

Key(Entity, Edge)

NodeSet(Node, Node, ...)

owns

excludes

assigns(Attribute)

Actor

Model

scala.collection.immutable.Map[Key, NodeSet]

UseCase

Task
Scenario

VividScenario

Function

Data

Quality

Interface

Spec(String)

Gist(String)

Status(Level)

Why(String)

Example(String)

Input(String)

Design

precedesOutput(String)

Trigger(String)

Precond(String)

Frequency(String)

Critical(String)

Problem(String)
Prio(Int)

Label(String)

Image(String)

Class

Member

inherits

requires

helps

hurts

Comment(String)

Deprecated(String)

deprecates

Status(value: Level)

SPECIFIED

ELICITED

VALIDATED

PLANNED

IMPLEMENTED

TESTED

RELEASED

DROPPED

POSTPONED

up

up

up

up

up

up

FAILED

up

up

up

down

init

up

down

down

down

down

down

down

down

down

down

scala> val s = Status.init
s: reqT.Status =
Status(ELICITED)

scala> s.up
res1: reqT.Status =
Status(SPECIFIED)

scala> s.down
res2: reqT.Status =
Status(DROPPED)

reqT Task description example
Model(
Task("reception work") owns (Task("check in"), Task("booking")),
Task("check in") has (
Why("Give guest a room. Mark it as occupied. Start account."),
Trigger("A guest arrives"),
Frequency("Average 0.5 checkins/room/day"),
Critical("Group tour with 50 guests.")

),
Task("check in") owns (
Task("find room"), Task("record guest"), Task("deliver key")),

Task("record guest") has Spec(
"variants: a) Guest has booked in advance, b) No suitable room"

)
)

[Example modified from Lauesen: "Software Requirements – Styles and Techniques"]

Features of reqT-v2.2 publ. @ REFSQ13

• 2nd generation of DSL based on student feedback
• Deep integration with Scala collections
• A rich set of operators and methods for:

– extracting models parts (restrict, exclude, DFS, ...)
– finding elements of models
– updating and analyzing models

• Import/Export
– tabsep for integration with spreadsheet programs
– template-based HTML requirements doc generator

Features of reqT-v2.3

• New experimental features in v2.3-RC1
– Constraints on models, inside models
– Integration with constraint solver JaCoP

• prioritization
• release planning

– "Deep models" using recursive structures
• Submodel as attribute of any entity
• Modularization of models in subdomains
• ModelVector, ModelFiles

– Executable test cases as requirements in models

Themes planned for future releases

• GUI Editor & Visualizer
• GUI for Prioritization & Release Planning
• NLP Support
• Git Integration & History Analyzer
• Semantic checks as plugins
• ...

Interested in trying out or
contributing to reqT.org?

• Download at http://reqT.org
• Contact bjorn.regnell@cs.lth.se
• Clone https://github.com/reqT/reqT
• Pull-requests are welcome!
• Seeking strategic partnerships

with research groups that have
competence in e.g.
NLP, PLE, SPM, GORE, ...

