
Model
Software

Requirements
with reqT

Björn Regnell

INITIAL INCOMPLETE DRAFT November 5, 2013

Model
Software

Requirements
with reqT

Björn Regnell

DRAFT - version 0.1 November 5, 2013

© 2013 Björn Regnell, Lund, Sweden.

This is a draft manuscript.
All rights reserved.
Copyright © Björn Regnell. 2013. Lund. Sweden.
Please send suggestions for improvement to bjorn.regnell@cs.lth.se

Contents

1 Introduction 1
1.1 What is requirements engineering? 1
1.2 The abstract ”requirement” . 2
1.3 Specification quality . 3
1.4 Requirements language . 4
1.5 reqT – a free requirements tool . 5

2 Create models 7
2.1 Requirements as graphs . 7
2.2 Modeling goals . 9
2.3 Modeling data . 10
2.4 Spec+Why+Example . 11
2.5 Context diagram . 12
2.6 Quality requirements . 13
2.7 Deep models . 14

3 Compute models 15
3.1 Model operators . 15
3.2 Modeling decision status . 17

4 Interoperate with other tools 19
4.1 Save and load reqT models in Scala 19
4.2 Model visualization with GraphViz 20
4.3 Generate txt documents . 20
4.4 Generate html documents . 20
4.5 Export and import spreadsheet tables 20

5 A Catalogue of Concepts 21
5.1 Entities . 21

5.1.1 Context Entities . 21
5.1.2 Requirements Entities . 21

5.2 Relations . 23
5.3 Attributes . 25

5.3.1 String value attributes . 25
5.3.2 Integer value attributes . 25
5.3.3 Special attributes . 25

5.4 The reqT metamodel . 26

3

4 CONTENTS

A Scala by example 29
A.1 Object-oriented Scala . 29
A.2 Functional Scala . 30

Preface

reqT is a free software requirements engineering tool developed with the goal
to provide a flexible and scalable mix of natural-language requirements and
graph-oriented data structures in an executable language. With reqT your
requirements become code.

The development of reqT started at Lund University in Sweden 2011, and
is used in software engineering education at MSc level.

For information on how to download, install and run reqT, please visit
http://reqT.org

//reqT Scala-embedded DSL example 1-reqT-gist.scala

val m = Model(
Product("reqT") has Gist(
"""An extensible requirements engineering tool
|that flexibly combines natural language requirements
|with graph-like structures into computable models."""
.stripMargin),

Product("reqT") helps Goal("beMasterOfRequirements")
)

m.toTxt.save("myModel.txt")

// file myModel.txt with the reqT/txt external DSL

MODEL(
PRODUCT reqT HAS
GIST: An extensible requirements engineering tool
that flexibly combines natural language requirements
with graph-like structures into computable models.

PRODUCT reqT -- helps
--> GOAL beMasterOfRequirements

)

5

http://reqT.org

6 CONTENTS

Chapter 1

Introduction

1.1 What is requirements engineering?

Imagine that you are an experienced software engineer. You are working in
an organization that provides value to users through its successful software-
based products. The software is rapidly evolving through new and innova-
tive features with the aim to further increase user value and stay ahead of
competition. You have the responsibility to decide about which new software
features to create for future releases. How would you decide what software to
create next?

This is a key question in software engineering and the answer impacts
the benefit of the resulting software innovations as well as the cost of their
development. It is not an easy question and there is not a single, perfect
answer on how to do good software engineering decision making. The answer
depends on the context: the product, the market, the competitors, the abilities
of the software engineers, the financial situations, etc.

When deciding what software to create next you are doing requirements
engineering, or RE for short. The RE discipline includes a number of differ-
ent activities that often are carried out iteratively and in parallel, throughout
a system’s life cycle. Central activities of RE are:

• Elicitation: the activity of generating candidate requirements and knowl-
edge about their context. This involves answering questions such as:
What are the needs of current and future users? How to create inno-
vative (i.e. novel and valuable) ideas for future software development?
When have we acquired enough knowledge to be able to make a good
decision?

• Specification: the activity of documenting (candidate) requirements
and all the information related to them (considered cost-efficient to doc-
ument). To carry out this activity you typically need to answer these
questions: In what form should you specify requirements? How detailed
should the specifications be (amount of context information, level of ab-
stration etc.)? Who will use the specifications and for how long will they
persist in relevance?

1

2 CHAPTER 1. INTRODUCTION

• Validation: the activity of checking that (the documented representa-
tions of) requirements are good enough. Will these requirements lead to
successful software? Is this specification useful for down-stream devel-
opment activities including software design and testing?

• Prioritization: the activity of assessing candidate requirements based
on criteria such as benefit, cost, risk and urgency. Which set of require-
ments will generate most benefit in a certain time frame in relation to
their cost? How often should we re-assess our priorities? How to handle
uncertainty?

• Selection: the activity of deciding which requirements to implement
when, while taking into account priorities as well as inter-dependencies,
resource constraints and timing issues. When is it best to invest a cer-
tain amount of development effort on a certain set of requirements? How
often should we release new versions of our software? What is the best
trade-off between investments in features that promise short-term prof-
itability and investments in a robust software architecture for the long-
term sustainability of our product?

These activities depend on each other and are often carried out in parallel
and in an iterative manner. While you check your requirements (validation)
you may come up with ideas for new features (elicitation) that need to be doc-
umented so that you don’t forget about them (specification). The quality of the
output of the selection activity rely on the quality of the other activities and
you may find that it is impossible to arrive at a good release plan that sched-
ules a justifiable subset of requirements without doing some more elicitation.

1.2 The abstract ”requirement”

The term requirement is in software engineering often used in a very gen-
eral sense, capturing the abstract notion of some kind of entity that may rep-
resents any potential subject of software implementation. There are many
different conceivable requirements in any particular context and only some of
them are implemented and used in executing software. Sometimes require-
ments are expressed as high-level goals or abstract needs of current or future
stakeholders, and sometimes requirements are expressed as low-level, spe-
cific software solutions, colorful user interface designs or detailed technical
capabilities in relation to current standards.

A requirement in this abstract sense can, for example, be:

• an unarticulated wish
• an urgent must
• an exciting idea
• a pressing need
• a postponed feature wanted later
• a mock-up screen design

1.3. SPECIFICATION QUALITY 3

• a data entity to be stored in the system’s database
• a function operating on input data to produce some output data
• a cross-cutting quality aspect
• a challenging scheduling constraint on a set of features

All of these different forms of requirements, and many others, may have
their justification depending on the context. Are you developing web content
management support software in an open source project or a proprietary soft-
ware to be used in a nuclear power plant you probably have very different
approaches to how requirements are elicited, specified, validated, prioritized
and selected. The context determine available resource and time constraints
for requirements engineering, as well as the required quality of the result-
ing artifacts of requirements engineering such as product road-maps, release
plans and validated feature specifications.

1.3 Specification quality

Figure 1.1 illustrates how the specification quality, in terms of e.g. complete-
ness, may vary over time. As elicitation, specification, validation, prioriti-
zation and selection progresses iteratively over time, some requirements get
more attention than others and therefore evolve faster in terms of specifica-
tion quality. This reflect the fact that there are differences in risk of misin-
terpretation for different requirements and some can stay rather incomplete
and ambiguous and still provide a good-enough basis for decision making and
down-stream design.

Figure 1.1: An illustration of how the specification quality of a set of re-
quirements can vary over time. Some requirements may im-
prove faster in quality compared to others. The lighter areas
represent higher specification quality.

4 CHAPTER 1. INTRODUCTION

1.4 Requirements language

Central to all the activities of elicitation, specification, validation and prioriti-
zation is the requirements language used to express the data, information
and knowledge in the RE process. Ideally you would like a language that
can express anything expressible in a complete an unambiguous way that is
understandable to any stakeholder, but in practice you cannot get all these
wishes to a reasonable cost. A high degree of completeness can in some cases
require unjustifiable effort in elicitation and specification. A low degree of
ambiguity may require a restriction of terminology to well-defined terms with
one stipulated interpretation, but at the same time such restrictions limit
what can be expressed.

The language you express requirements in should ideally be suitable in
many different situations. You may want to discuss requirements in an on-
line user forum or stipulate a template for requirements filed by users in an
issue tracking system. You may want to version control your selected require-
ment in a data base or give examples of requirements inter-dependencies on a
presentation slide when you show a product road-map to a steering committee
of investors. It is likely that you need to adapt the language in which you ex-
press requirements to the particular context in which they are interpreted and
make different trade-offs of completeness, ambiguity and expressiveness de-
pending on who is interpreting your requirements descriptions and how much
time you have available to formulate your requirements.

It is very likely that what is a good trade-off between completeness and
ambiguity may be different for different subsets of requirements and also dif-
ferent at different points in time. Thus you may, at a given point in time, have
some parts of your requirement repository that are expressed in comparably
incomplete and ambiguous language as it may not be worth while to go fur-
ther, while other parts are more elaborate and more carefully expressed as
they may be more critical with respect to avoiding risks of misinterpretation.

In practice, requirements are often expressed in natural language, e.g. in
English. The reason that natural language is so common in requirements
engineering is that it has great flexibility and high expressive power and, if
used carefully, natural language is often easy to understand by users familiar
to the software application domain. However, natural language is often am-
biguous and its flexibility allows different persons to express the same thing
in may different ways. As the requirements engineering progresses, domain-
specific terms arise and get a special meaning to the people involved in the
process. Terms may thus get preciser definitions over time and thereby the
risk of misinterpretation can be reduced.

There is often need for both expressing very precise aspects, such as the
cardinality of data relations in a database model, to very ’fluffy’ things such as
the feeling that the user experiences when a new game level is reached. Thus,
it can often be useful in RE to combine informal and formal language using
different forms of expression (text, images, hypermedia, etc.).

Computer tools are heavily used in real-world RE. Often a mix of tools

1.5. REQT – A FREE REQUIREMENTS TOOL 5

are applied, such as word processors, spreadsheet programs, databases, issue
trackers, configuration management systems, drawing tools, etc. A dedicated
RE tool can provide specific support for managing requirements, such as keep-
ing track of links among requirements and visualizing of priorities. There are
nowadays numerous commercial RE tools available, but many are expensive,
complex and not sufficiently open [2].

1.5 reqT – a free requirements tool

The open source tool called reqT [1] is developed with the particular aim to
provide a flexible and scalable combination of informal text and formalized
structure. The development of reqT started at Lund University in Sweden
2011, and is used in software engineering education at MSc level [6].

In reqT, a set of essential RE concepts can be captured in a language that
combines natural language text into computational entities. With reqT, re-
quirements are turned into code, that when executed creates a run-time re-
quirements data structure that can be manipulated using scripts.

The following main goals and associated design strategies are the basis for
the development of reqT:

1. Semi-formal. Goal: Provide a semi-formal representation of typical re-
quirements modeling constructs that can illustrate a flexible combina-
tion of expressive natural language-style requirements with type-safe
formalisms allowing static checks. Design: Use graph structures based
on typed nodes representing typical requirement entities and attributes,
and typed edges representing typical requirements relations, and im-
plement the graph as an associative array (map). Why? Graphs are
well-known to many software engineers. Maps are efficient from an im-
plementation perspective and may be less complex to master compared
to e.g. SQL databases.

2. Open. Goal: Provide a platform-independent requirements tool that is
free of charge. Design: Use Java Virtual Machine technology and release
the code under an open source license. Use tab-separated, tabular text-
files for import and export. Use HTML for document generation. Why?
There are many free libraries available that runs on a JVM. Tab-sep and
HTML support interoperability.

3. Scalable. Goal: Provide an extensible requirements modeling language
that can scale from small, concise models to large families of models
with thousands of requirements entities and relations. Design: Im-
plement reqT as an embedded DSL (Domain-Specific Language) [8] in
the Scala programming language [5]. Use Map and Set from Scala
collections to represent requirements graphs. Why? Scala is a mod-
ern, statically typed language with an efficient collections library. Scala
offers scripting abilities that provide general extensibility without re-
compilation. Integrated development environments [7], as well as in-

6 CHAPTER 1. INTRODUCTION

teractive scripting tools are available [3]. When requirements are ex-
pressed as code, general software engineering tools can be applied when
scaling to large projects, e.g. configuration management tools and cloud-
based code repositories to facilitate requirements evolution and collabo-
ration over Internet.

Chapter 2

Create models

The reqT tool includes a DSL for requirements modeling [1, 6], allowing do-
main experts to specify and analyze requirements. The metamodel of the
reqT DSL aims to provide RE-specific concepts that give flexible expressive-
ness to domain experts by allowing a mix of informal natural language text
and graph-oriented formalizations of typed requirements entities, attributes
and relations. The use of a DSL allows requirements to be represented as tex-
tual, computational entities that can be stored together with production code
and test scripts in a common version management system.

By embedding the DSL [8] into Scala, reqT can utilize Scala’s collection
library. This enables domain experts to combine their model specifications
with Scala scripts that manipulate their models using existing collection op-
erations. Models can also be traversed for various semantical checks, e.g. to
investigate cycles and specific combinations of attributes etc.

2.1 Requirements as graphs

A requirements model in reqT can be constructed using a sequence of triplets:
<Entity> <Edge> <NodeSet>
Such a triplet can e.g. be constructed by connecting, for example, a feature

entity with a list of two attributes, e.g. a gist and a spec, via the edge has,
using the following syntax:
Feature("hello") has (
Gist("print greeting"),
Spec("Send ’hello’ to the console.")

)

The feature above has a string-valued identifier ”hello”, and each of the
attributes gist and spec has a boxed string value. If only one attribute is
connected to an entity, there is no need for the extra parenthesis pair, as in
this example:
Feature("hello") has Gist("print greeting")

By boxing comma-separated triplets like this: Model(<list of triplets>) a
collection of requirements is stored in a model. The use of three such triplets
collected in a model is exemplified in Listing 2.1.

7

8 CHAPTER 2. CREATE MODELS

Model(
Feature("F1") has (
Spec("The system shall..."),
Status(IMPLEMENTED)

),
UserStory("US1") has (
Spec("As a user I want..."),
Status(ELICITED)

),
UserStory("US1") requires Feature("F1")

)

Listing 2.1: A model with a feature and a user story. Entities are called
sources if the stand to the left of an edge (has edge or relation
edge). Entities to the right of an edge are called destinations.

The has edge connects source entities with destination attributes,
while other edges are relations that connect source entities with (a set of) des-
tination entities, such as the requires edge in Listing 2.6. Other examples
of relations between entities are: owns, excludes, helps, hurts and preceedes.

The model has one requires relation between the two entities UserStory
US1 and Feature F1, where the former has the attributes Gist and Status,
while the latter has Spec and Status attributes. Entities, relations and at-
tributes can be flexibly connected using the concepts of the reqT metamodel,
depicted in Figure 5.1 on page 27.

A model can be visualized using GraphViz [?]. When calling the method
toGraphViz on a model, a dot language [?] export of the model is generated
that can be rendered using GraphViz as shown in Figure 2.1.

UserStory
US1

Feature
F1

requires

Gist(As a user I want...)

Status(ELICITED)

Spec(The system shall...)

Status(IMPLEMENTED)

Figure 2.1: The corresponding graph of the example in Listing 2.6. Oval
nodes represent entities. Rounded rectangles represent at-
tributes. Solid arrowed lines represent typed relation edges.
Dashed lines represent edges to attributes.

2.2. MODELING GOALS 9

2.2 Modeling goals

Model(
Product("shipyardQuoting") has
Spec("Support cost recording and quotation with experience data."),

Goal("precalcAccuracy") has
Spec("Our pre-calculations shall hit within 5%."),

Product("shipyard quoting") helps Goal(" precalcAccuracy ")
)

Listing 2.2: A small goal model.

10 CHAPTER 2. CREATE MODELS

2.3 Modeling data

Model(
Data("roomDB") has Image("roomDB-ER-diagram.png"),
Class("Guest") relatesToOneOrMany Class("Stay"),
Class("Stay") relatesToOneOrMany Class("RoomState"),
Class("Room") relatesToOneOrMany Class("RoomState"),
Class("RoomState") has Image("room-state-diagram.png")

)

Listing 2.3: Modeling cardinality of relations.

Model(
Data("createGuest") has (
Spec(
"The product shall store guest data according to the
virtual window ’create guest data’."),

Image("create-guest-data.png")
)

)

Listing 2.4: Virtual Window example.

Model(
Class("Guest") has (
Spec(
"The guest is the person or company who has to pay the bill.
A guest has one or more stay records. ’Customer’ is a synonym
for guest but in the database we only use ’guest’. The persons
staying in the rooms are also called guests but are not guests
in database terms."),

Example(
"(1) A guest who stays one night.
(2) A company with employees staying now and then, each of

them with his own stay record where his name is recorded.
(3) A guest with several rooms within the same stay.")

),
Member("name") has
Spec(
"Text, 50 chars. The name stated by the guest. For companies the
official name since the bill is sent there. Longer names exist but
better truncate at registration time than at print out time."),
Member("passport") has

Spec(
"Text 12 chars. Recorded for guests who are obviously foreigners.
Used for police reports in case the guest does not pay."),

Class("Guest") owns (
Member("name"),
Member("passport")

)
)

Listing 2.5: A data model. Example adapted from Lauesen [4].

2.4. SPEC+WHY+EXAMPLE 11

2.4 Spec+Why+Example

It is often useful to include both rationale (why) and example design infor-
mation (how) in a specification of what the system should do. In many cases,
designs are explicitly marked as just examples and not as mandatory solu-
tions in order to keep the freedom of inventing better solutions at a later point
in time.

Model(
Feature("navigate") has (
Spec(
"It shall be possible to perform the commands start, stop, ...
with both hands at the patient."),

Why(
"Measuring neural response is a bit painful to the patient.
Electrodes must be kept in place ... So both hands should be
at the patient during a measurement."),

Example(
"Might be done with mini keyboard (wrist keys), foot pedal,
voice recognition, etc.")

)
)

Listing 2.6: Including help for readers to better understand the spec. Ex-
ample adapted from Lauesen [4]

12 CHAPTER 2. CREATE MODELS

2.5 Context diagram

Model(
Product("HotelSystem") owns (
Interface("ReceptionUI"), Interface("GuestUI"),
Interface("TelephonyAPI"), Interface("AccountingAPI")

),
Product("HotelSystem") has Image("context-diagram.png"),
Interface("ReceptionUI") has (
Input("booking, check-out"), Output("service note"),
Image("recetionUI-screen.png")

),
Interface("GuestUI") has (
Output("confirmation, invoice"),
Image("guestUI-screen.png")),

Actor("Receptionist") requires Interface("ReceptionUI"),
Actor("Guest") requires Interface("GuestUI"),
Actor("Receptionist") requires Interface("ReceptionUI"),
Actor("Telephony System") requires Interface("TelephonyAPI"),
Actor("Accounting System") requires Interface("AccountingAPI")

)

Listing 2.7: Contex diagram example.

2.6. QUALITY REQUIREMENTS 13

2.6 Quality requirements

Model(
Quality("ttpm") has (
Gist("Time to play music"),
Spec("Measured in milliseconds using Test Case X"),
Utility(10000), Differentiation(1000), Saturation(50),
Submodel(
Target("easy") has QualityLevel(140),
Barrier("first") has (Min(1400), Max(1600)),
Barrier("second") has QualityLevel(500),
Product("competitorX") has QualityLevel(2000),
Product("competitorY") has QualityLevel(2000)

)
)

)

Listing 2.8: A quality requirement.

14 CHAPTER 2. CREATE MODELS

2.7 Deep models

Any entity in a Model can contain a Submodel attribute that in turn can con-
tain a Model, hence enabling a hierarchy of models in a recursive tree struc-
ture. A hierarchical modeling approach can be used for scalability reasons
when there is a need to modularize large models, but also for expressing mod-
els where e.g. different stakeholder have different priorities for the same set
of features, as is shown in Listing ?? in Section ??. References to values of
an attribute of a certain entity is created using the bang operator, e.g. the
expression (Feature("x")!Prio) constructs a reference to the Prio attribute
value of Feature("x"). If models are contained inside models, references in-
cluding submodel paths of arbitrary lengths can be constructed by successive
application of the bang operator.

For example, the expression (Stakeholder("s")!Feature("x")!Prio) refers
to the submodel of Stakeholder("s") and the Prio attribute value of Feature("x")
in that submodel.

var myReqs = Model(
Feature("nice") has Spec("this is a nice feature"),
Feature("cool") has Spec("this is a cool feature"),
Stakeholder("Anna") has Submodel(
Feature("nice") has Prio(1),
Feature("cool") has Prio(2)

),
Stakeholder("Martin") has Submodel(
Feature("nice") has Prio(2),
Feature("cool") has Prio(1)

)
)

You can reference values of attribute in deeply nested submodel structures
using the ! operator.

val m = Model(
Feature("f") has Prio(1),
Stakeholder("a") has Submodel(
Feature("g") has Benefit(2),
Resource("x") has Submodel(
Feature("h") has Cost(3)

)
)

)

m(Feature("f")!Prio) == 1
m(Stakeholder("a")!Feature("g")!Benefit) == 2
m(Stakeholder("a")!Resource("x")!Feature("h")!Cost) == 3

Chapter 3

Compute models

3.1 Model operators

Users of reqT can carve out parts of models with special operators, including
the restrict / and exclude \ operators [6]. Given a model m, the expression
m / Feature evaluates to a new model restricted to keys only containing en-
tities of type Feature.

The exclude operator used in the complementary expression m \ Feature
yields a new Model with all keys of m that do not have a Feature entity.

It is also possible to use the restrict and exclude operators over attributes
and relations. There are several other operators for, e.g., aggregation of mod-
els and for extracting parts of a model using depth first search by following
relation edges. Table ?? show some of the methods available on models. For a
complete account of model methods, see http://reqt.org/api/index.html#
reqt.Model.

15

http://reqt.org/api/index.html#reqt.Model
http://reqt.org/api/index.html#reqt.Model

16 CHAPTER 3. COMPUTE MODELS

Table 3.1: Some examples of applying operators on models
The m variable is of type Model.
m += x is the same as m = m + x
owns is a special relation: an entity can only have one direct owner
all operations are immutable; new model is created

Example Effect
restrict on sources
m / Feature("a") Restrict m to sources with entity

Feature("a")
m / Feature Restrict m to sources with enities of type

Feature
m / Gist Restrict m to sources has attribute Gist
restrict on destinations
m /-> Feature("a") Restrict m to sources with Feature("a") as a

destination
restrict extended
m /+ Feature("a") Restrict m to keys with entity Feature("a")

3.2. MODELING DECISION STATUS 17

To do this... ...code this...
Create empty model var m = Model()

Add entity m += Feature("hi") has Spec("print greeting")

Add entity m += Feature("f1") has (Gist("g1"), Spec("s1"))

Overwriting attribute m += Feature("f1") has Gist("g2")

Add an owns-relation m += Product("p1") owns (Feature("f1"), Feature("hi"))

Remove an entity var m2 = m - Feature("f1")

Restrict operator m / Feature("f1")
m / Feature
m / Spec
m / Context
m / Feature / Gist

Restrict to destinations m /-> Feature("f1")

Extended restrict adds des-
tinations, thus both sources
and destinations of feature f1

m /+ Feature("f1")

Depth first search m /--> Product("p1")

Partition
Partition extended
Partition on destinations
Partition depth first search

var (mx, my) = m | Feature
var (mx, my) = m |+ Feature
var (mx, my) = m |-> Feature
var (mx, my) = m |--> Feature

Aggregate mx ++ my

Difference mx -- my

Intersect mx & my

Exclude m \ Feature("f1")

Other Complement operators m \-> Feature("f1")
m \+ Feature("f1")
m \--> Feature("f1")

Add same attribute to all en-
tities

m + Gist("same same")

Remove all Gist attributes m - Gist

3.2 Modeling decision status

18 CHAPTER 3. COMPUTE MODELS

reqT> val s = Status.init
s: reqT.Status = Status(ELICITED)

reqT> s.up
res1: reqT.Status = Status(SPECIFIED)

reqT> s.down
res2: reqT.Status = Status(DROPPED)

reqT> var m = Model(Feature("x") has Status.init, Feature("y") has Status.init)
m: reqT.Model =
Model(
Feature("x") has Status(ELICITED),
Feature("y") has Status(ELICITED)

)

reqT> m.up
res3: reqT.Model =
Model(
Feature("x") has Status(SPECIFIED),
Feature("y") has Status(SPECIFIED)

)

reqT> (m / Feature("x")).up ++ (m \ Feature("x"))
res4: reqT.Model = Model(
Feature("x") has Status(SPECIFIED),
Feature("y") has Status(ELICITED)

)

reqT> m.up(Feature("x")) //same as above but shorter

Listing 3.1: Promoting a status level up the salmon ladder.

Chapter 4

Interoperate with other tools

4.1 Save and load reqT models in Scala

reqT> val m = Model(Req("x") relatesTo Req("y"))
m: reqt.Model = Model(Req("x") relatesTo Req("y"))

reqT> m.save("my-model.scala")
<console>:19: error: value save is not a member of reqt.Model

m.save("my-model.scala")

reqT> "any string can be saved".save("str.txt")
Saved to file: C:\Users\bjornr\workspace\reqT/str.txt ^

reqT> m.toString.save("my-model.scala") //same as m.toScala.save("my-model.scala")
Saved to file: C:/Users/bjornr/workspace/reqT/gists/my-model.scala

reqT> val m2 = Model.load("my-model.scala") //load model from file
m2: reqt.Model = Model(Req("x") relatesTo Req("y"))

reqT> val str = load("my-model.scala") //load file as string
str: String = Model(Req("x") relatesTo Req("y"))

reqT> val m3 = str.toModel //interpret str using scala interpreter, Model expected
m3: reqt.Model = Model(Req("x") relatesTo Req("y"))

reqT> ls //list files in workDir
my-model.scala

reqT> pwd //print workDir path
workDir == C:/Users/bjornr/workspace/reqT/gists

reqT> cd("..") //change dir
workDir == C:/Users/bjornr/workspace/reqT

Listing 4.1: Save and load models.

19

20 CHAPTER 4. INTEROPERATE WITH OTHER TOOLS

4.2 Model visualization with GraphViz

4.3 Generate txt documents

4.4 Generate html documents

4.5 Export and import spreadsheet tables

Chapter 5

A Catalogue of Concepts

5.1 Entities

5.1.1 Context Entities

• Product A software (and hardware?) system for which requirements
are modeled.

• Release A version of a product offered to stakeholders at a certain point
in time.

• Stakeholder A role or person that have a stake in a product’s require-
ments, e.g. a specific customer.

• Actor A human user, machine or system that interacts with a product
through an interface.

• Resource An asset used in the development of a product, e.g. develop-
ment team effort, test team effort, monetary investments.

• Subdomain A decomposition of the modeled domain.
• Component A subsystem that may be part of a product, e.g. a platform,

library, API or java package.

5.1.2 Requirements Entities

Intentional Requirements

• Goal Objective behind a product. Goals can be refined and related by
helps and hurts relations.

• Wish Something desired, but not yet formulated as a candidate require-
ment.

Generic Requirements

• Req An abstract entity without specific nature. Often used to make
abstract reasoning about requirements relations in principal. Can be
used when type of requirement is unknown.

• Idea An initial, perhaps creative, suggestion or other result of e.g. brain-
storming, not yet formulated as a candidate requirement.

21

22 CHAPTER 5. A CATALOGUE OF CONCEPTS

• Feature A decision unit describing a property of a product that can be
selected in a release if it has a good benefit/cost ratio.

• Label A generic entity that labels (a set of) requirements into a certain
category. Often used together with a comment attribute.

ToDoReq

• Issue A problem, bug, change request, improvement proposal or similar.
Often found in customer feedback and support systems.

• Ticket A work item that can be assigned to a resource. Something that
should or could be done, e.g. a requirements engineering task such as
further interviews with stakeholder X.

Quality Requirements

• Quality A quality requirement or aspect. Often involves a scale and a
measure of quality level on that scale.

• Barrier Getting beyond this quality level gives a steep increase in cost.
• Target A quality level that should or could be reached, e.g. in a specific

release for a specific quality aspect for a specific feature.

Functional Requirements

• Function A requirement on how input data is mapped to output data.
Functionality of the system in terms of input, processing and output.

• Interface A system border where interaction with surrounding actors
are taking place, for example be a user interface or a communication
link with a protocol, transfer data to the surrounding world.

• Design A specific realization or internal aspects of system and architec-
ture. Captures ’how’.

Scenario Requirements

• UserStory Short description of what user roles want and why.
• UseCase A product-level description of how user roles (actors) reaches

their goals.
• TestCase A specification of acceptance criteria in terms of input and

expected output.
• Task A domain-level description of how user roles (actors) reaches their

goals.
• Scenario An example-based usage description, for example a vivid nar-

rative of current work or a futuristic story with envisioned details.

Data Requirements

• Data A data requirements describes what data to be stored in the sys-
tem.

5.2. RELATIONS 23

• Class A class defines a type of data that can be instantiated in the do-
main or in the product.

• Member A member of a class, an attribute or method.
• Relationship An specific association between data entities or classes.

Often used together with relations with cardinality, e.g.:
Model(
Data("libraryDatabase") has Image("libraryDatabase-ER.svg"),
Class("book") holds Member("title"),
Class("author") holds Member("name"),
Class("book") relatesToOneOrMany Class("author"),
Relationship("writtenBy") holds (
Class("book"), Class("author")

),
Class("author") relatesToOneOrMany Class("book"),
Relationship("authorOf") holds (
Class("author"), Class("book")

)
)

Listing 5.1: A relationships among classes in a library system.

Product Line Requirements

• VariationPoint To express product line variability. A variation point
relates to a set of variants that can be bound in specific products.

• Variant A specific choice of a variation point, e.g.:
Model(
Component("myPlatform") has Submodel(
VariationPoint("color") relatesToOneOrMany (
Variant("blue"), Variant("red"), Variant("green")

),
VariationPoint("shape") relatesToOne (
Variant("round"), Variant("square")

),
Variant("round") excludes Variant("red")

),
Product("coolApp") binds Component("myPlatform"),
Product("coolApp") has Submodel(
VariationPoint("color") binds (
Variant("red"), Variant("yellow")

),
VariationPoint("shape") binds Variant("round")

)
)

Listing 5.2: A variability model.

5.2 Relations

• owns A relation expressing exclusive ownership between entities. If
an entity x owns another entity y, then y cannot be owned by another
entity.

24 CHAPTER 5. A CATALOGUE OF CONCEPTS

• holds A relation expressing non-exclusive ”ownership” between entities.
Both entity x and entity z can hold entity y.

• requires A relation expressing that an entity requires (a set of) entities.
If entity x requires entity y, then if x is included in the product (release)
then so should also y. The requires relation is not mutual. A two-way
requires relations is modeled using two requires relations, e.g.:

Model(
Req("x") requires Req("y"),
Req("y") requires Req("x")

)

Listing 5.3: A mutual requires relationship.

• excludes A relation expressing that an entity excludes (a set of) enti-
ties. If entity x excludes entity y, then if x is selected to be included in
the product (release) then y cannot be selected and vice versa.

• releases This relation can be used to express that a release entity has
a set of requirements entities in its release plan.

• helps Goals support other goals and the helps relation can, e.g., express
that the goals g1 and g2 both support the achievement of goal g0:

Model(
Goal("g1") helps Goal("g0"),
Goal("g2") helps Goal("g0"),
Goal("g3") hurts Goal("g0")

)

Listing 5.4: A goal model with helps and hurts relations.

• hurts Similarly to helps, hurts can express that a goal is hindering the
achievement of another goal. In Listing 5.4 goal g3 is negatively con-
tributing to the achievement of g0.

• precedes This relation expresses temporal ordering among require-
ments. If requirement r precedes requirement s then r should be im-
plemented before s.

• inherits
• binds
• implements
• verifies
• deprecates

Relations with Cardinality

• relatesTo
• relatesToOne
• relatesToOneOrMany
• relatesToZeroOrMany
• relatesToZeroOrOne

5.3. ATTRIBUTES 25

5.3 Attributes

5.3.1 String value attributes

• Gist
• Spec
• Why
• Example
• Expectation
• Input
• Output
• Trigger
• Precond
• Frequency
• Critical
• Problem
• Comment
• Deprecated

5.3.2 Integer value attributes

• Prio
• Order
• Cost
• Benefit
• Capacity
• Urgency
• Utility
• Differentiation
• Saturation
• Value
• QualityLevel
• Min
• Max
• Label

5.3.3 Special attributes

• Status
• Submodel
• Code
• Constraints
• Image
• External

26 CHAPTER 5. A CATALOGUE OF CONCEPTS

5.4 The reqT metamodel

A bag of entities for you to combine with a bag of attributes, and with other
entities using a bag of relations. See what you can play with in Figure 5.1.
You can mix and match as you please.

5.4. THE REQT METAMODEL 27

E
le

m
en

t

C
o

n
ce

p
t

S
tr

u
ct

u
re

E
n

ti
ty

(i
d

:
S

tr
in

g
)

C
o

n
te

xt

P
ro

d
u

ct

R
el

ea
se

S
ta

ke
h

o
ld

er

R
eq

u
ir

em
en

t

A
tt

ri
b

u
te

[T
](

va
lu

e:
 T

)

E
d

g
e

A
tt

ri
b

u
te

E
d

g
e

R
el

at
io

n

h
as

K
ey

(E
n

ti
ty

, E
d

g
e)

N
o

d
eS

et
(N

o
d

e,
 N

o
d

e,
 ..

.)

o
w

n
s

ex
cl

u
d

es
R

es
o

u
rc

e

M
o

d
el

sc
al

a.
co

lle
ct

io
n

.im
m

u
ta

b
le

.M
ap

[K
ey

, N
o

d
eS

et
]

S
ce

n
ar

io
R

eq

In
te

rf
ac

e

S
p

ec

G
is

t

S
ta

tu
s

S
u

b
m

o
d

el

P
ri

o

D
es

ig
n

p
re

ce
d

es

B
en

ef
it

C
o

st

in
h

er
it

s

re
q

u
ir

es

h
el

p
s

h
u

rt
s

im
p

le
m

en
ts

Q
u

al
it

y

D
at

aR
eq

A
ct

o
r

S
u

b
d

o
m

ai
n

N
o

d
e

S
ce

n
ar

io

T
as

k

T
es

tC
as

e

U
se

rS
to

ry

U
se

C
as

e

D
at

a

C
la

ss

M
em

b
er

R
el

at
io

n
sh

ip

Id
ea

R
eq

T
ar

g
et

B
ar

ri
er

Q
u

al
it

yR
eq

C
o

n
st

ra
in

ts

E
xa

m
p

le

E
xp

ec
ta

ti
o

n
L

ab
el

O
u

tp
u

t

E
xt

er
n

al
[T

 <
:

A
tt

ri
b

u
te

[_
]]

T
ri

g
g

er

P
re

co
n

d

F
re

q
u

en
cy

C
ri

ti
ca

l

P
ro

b
le

m

O
rd

er

U
rg

en
cy

C
ap

ac
it

y

C
o

d
e

C
o

m
m

en
t

In
p

u
t

D
ep

re
ca

te
d

U
ti

lit
y

D
if

fe
re

n
ti

at
io

n

S
at

u
ra

ti
o

n

Q
u

al
it

yL
ev

el

M
in

M
ax

re
la

te
sT

o

re
le

as
es

ve
ri

fi
es

d
ep

re
ca

te
s

re
la

te
sT

o
O

n
e

re
la

te
sT

o
O

n
eO

rM
an

y

re
la

te
sT

o
Z

er
o

O
rM

an
y

re
la

te
sT

o
Z

er
o

O
rO

n
e

W
h

y

S
tr

in
g

V
al

u
e

S
ta

tu
sL

ev
el

V
al

u
e

M
o

d
el

V
al

u
e

C
o

n
st

rV
ec

to
rV

al
u

e

In
tV

al
u

e

T
o

D
o

R
eq

Is
su

e

T
ic

ke
t

P
ro

d
u

ct
L

in
eR

eq

C
o

m
p

o
n

en
t

V
ar

ia
ti

o
n

P
o

in
t

V
ar

ia
n

t

F
ea

tu
re

G
o

al

F
u

n
ct

io
n

In
te

n
ti

o
n

al
R

eq

F
u

n
ct

io
n

al
R

eq

G
en

er
ic

R
eq

h
o

ld
s

b
in

d
s

V
al

u
e

W
is

h

Figure 5.1: The reqT metamodel.

28 CHAPTER 5. A CATALOGUE OF CONCEPTS

Appendix A

Scala by example

A.1 Object-oriented Scala

//a singleton object with one method (corresponds to static in java)

object hello { def to(s: String) = "Hello " + s }

hello.to("world") //> res2: String = Hello world

//same as above, but operator notation
hello to "world" //> res3: String = Hello world

//classes in Scala
class Hello2(val s: String) { //automatic constructor generated, s is public
val dot = "!" //an assign-once variable that cannot be changed
var extra = ""
lazy val demo = { println("NOW"); "wake up" } //assign when/if needed
def greet(s2: String) = s +" " + s2 + dot + extra

}

val h2 = new Hello2("Hi")
h2.dot = "," //compilation error: re-assignment to val
h2.extra = "?"
println(h2.greet("world"))
println(h2.demo)

case class Hello3(s: String, dot: String = ".", extra: String = "") {
def hello(s2: String) = s +" " + s2 + dot + extra

}

val h3 = Hello3("Hi there", extra = "..") //new is not needed
println(h3 hello "friend")

29

30 APPENDIX A. SCALA BY EXAMPLE

A.2 Functional Scala

//** Functional Scala

//scala has a powerful collection library including immutable List, Vector, Set, Map
val xs1 = List(1,2,3) //> xs1: List[Int] = List(1, 2, 3)
val prepend = 0 :: xs1 //> prepend: List[Int] = List(0, 1, 2, 3)
val xs2 = xs :+ 4 //> xs2: List[Int] = List(1, 2, 3, 4)
val xs3 = xs ++ List(1,2,3) //> xs3: List[Int] = List(1, 2, 3, 1, 2, 3)

//functions are first class values that can be passed as parameters
def twice(i: Int) = i*2 //> twice: (i: Int)Int
val xs4 = xs3.map(twice) //> xs4: List[Int] = List(2, 4, 6, 2, 4, 6)

//lambda notation for nameless concise functions
val xs5 = xs3.map(x => 2 * x) //> xs5: List[Int] = List(2, 4, 6, 2, 4, 6)
val xs6 = xs3.map(2 * _) //> xs6: List[Int] = List(2, 4, 6, 2, 4, 6)

val trice = (x : Int) => x * 3 //> trice: Int => Int = <function1>
val xs7 = xs3 map trice //> xs7: List[Int] = List(3, 6, 9, 3, 6, 9)

//function application is actually a method call to method apply
object quad {
def apply(x: Int) = x * 4

}
val x1 = quad.apply(4) //> x1: Int = 16
val x2 = quad(4) //> x2: Int = 16

//functions are objects
object quint extends Function1[Int,Int] {
def apply(x: Int) = x * 5

}
val xs8 = xs3 map quint //> xs8: List[Int] = List(5, 10, 15, 5, 10, 15)

Bibliography

[1] reqT web page, http://reqT.org/, visited June 2013.

[2] Carrillo de Gea, J., Nicolas, J., Aleman, J., Toval, A., Ebert, C., Vizcaino,
A.: Requirements engineering tools. Software, IEEE 28(4), 86 –91 (july-
aug 2011)

[3] Kogics: Kojo, http://www.kogics.net/kojo, visited Nov 2012.

[4] Lauesen, S.: Software Requirements - Styles and Techniques. Addison-
Wesley (2002)

[5] Odersky, M., et al.: An overview of the Scala programming lan-
guage. Tech. rep. (2004), http://lampwww.epfl.ch/~odersky/papers/
ScalaOverview.html

[6] Regnell, B.: Reqt.org – towards a semi-formal, open and scalable require-
ments modeling tool. In: Doerr, J., Opdahl, A. (eds.) Requirements En-
gineering: Foundation for Software Quality, Lecture Notes in Computer
Science, vol. 7830, pp. 112–118. Springer Berlin Heidelberg (2013)

[7] Scala Eclipse IDE: http://scala-ide.org/, visited Nov 2012.

[8] Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an anno-
tated bibliography. ACM Sigplan Notices 35(6), 26–36 (2000)

31

http://reqT.org/
http://www.kogics.net/kojo
http://lampwww.epfl.ch/~odersky/papers/ScalaOverview.html
http://lampwww.epfl.ch/~odersky/papers/ScalaOverview.html
http://scala-ide.org/

	Introduction
	What is requirements engineering?
	The abstract ''requirement''
	Specification quality
	Requirements language
	reqT – a free requirements tool

	Create models
	Requirements as graphs
	Modeling goals
	Modeling data
	Spec+Why+Example
	Context diagram
	Quality requirements
	Deep models

	Compute models
	Model operators
	Modeling decision status

	Interoperate with other tools
	Save and load reqT models in Scala
	Model visualization with GraphViz
	Generate txt documents
	Generate html documents
	Export and import spreadsheet tables

	A Catalogue of Concepts
	Entities
	Context Entities
	Requirements Entities

	Relations
	Attributes
	String value attributes
	Integer value attributes
	Special attributes

	The reqT metamodel

	Scala by example
	Object-oriented Scala
	Functional Scala

