
Flexible Requirements Modeling with reqT
– a hands-on tutorial

http://reqT.org

bjornregnell.se, Lund University, Sweden

12th Swedish Requirements Engineering Research Network Signal,
SiREN2013 sirensweden.org

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

http://reqT.org
sirensweden.org

Good enough Requirements Engineering?

3 software engineering trends: Decentralize, Distribute, Document less
I Agile teams + SW ecosystems -> No centrally controlled, detailed "master plan"
I Continuous integration & deployment
I Increased parallelization
I Distributed Version Control, e.g. Git
I "Code is king"

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

A challenge for the RE communitty

How to best help code-focused, agile software engineers
to do good enough requirements engineering in a

decentralized, distributed, documentation-hostile setting?

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

Goals of reqT – a Requirements Engineering Tool

Design an interesting tool based on these goals:

Goal Design choices Rationale
Semi-
formal

• Use graph structures
• Mix human Natural
Language (NL) with es-
sential RE semantics

• Graphs are well-known by softwa-
re engineers and powerful for expres-
sing structure and flexible for search.
• NL is well-known and powerful...

Open • Free, permissive
OSS license
• Cross-platform: JVM

• Allow integration of existing code
bases in JVM-based languages
• Enable academic usage and con-
tribution in teaching and research

Scalable • Internal DSL in Scala
www.scala-lang.org

• Open-ended language
• Scala is scalable, powerful, conci-
se, typesafe, scriptable, ...

Short paper published at REFSQ2013: http://www.reqt.org/reqT-REFSQ2013-paper.pdf

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

www.scala-lang.org
http://www.reqt.org/reqT-REFSQ2013-paper.pdf

reqT: Requirements => ComputationalEntities

In reqT ...

I requirements are computational entities

I requirements are serialized as self-generating code

I the meta-model and its semantics are flexible:
> allow me to mix text with structure

> warn me, don’t force me

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

What can you do with reqT?

I Create and manage requirements models
using versatile collections

I Combine natural language expressiveness
with type-safe modeling

I Interoperate with spread sheet applications

I Auto-generate requirements documents for
web publishing

I Do powerful scripting of requirements
models with the Scala-embedded DSL

I Model and solve combinatorial decision
problems in RE such as Prioritisation and
Release Planning using a sub-DSL for
Constraint Satisfaction Programming
wrapping the JaCoP solver

http://reqT.org

http://www.jacop.eu

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

http://reqT.org
http://www.jacop.eu

reqT Gist

var m = Model(

Product("reqT") has Gist("A tool for modeling evolving requirements."),

Release("2.0") has Gist("Major update based on student feedback."),

Release("2.3") has Gist("Constraint solving for decision problems."),

Product("reqT") owns (Release("2.0"), Release("2.3"))

)

m += Feature("toHtml") has Gist("Generate web document.")

println(m)

m.toHtml.save("reqT.html")

m.toTable.save("reqT.txt")

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT provides a DSL for RE embedded in Scala

A reqT model includes a sequence of graph parts
<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model()

var myRequirements = Model(

Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),

Feature("f1") requires (Feature("f2"), Feature("f3")),

Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Download: http://reqT.org

Source code: https://github.com/reqT/reqT

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

http://reqT.org
https://github.com/reqT/reqT

reqT models are graph structures with
Entities & Attributes (nodes) and Relations (edges)

var myRequirements = Model(

Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),

Feature("f1") requires (Feature("f2"), Feature("f3")),

Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

Overview of the reqT metamodel

Element

Concept Structure

Node

Entity(id: String)

Context

Product

Release

Stakeholder

Requirement

Feature

Goal

Attribute[T](value: T)

Edge

AttributeEdge

Relation

has

Key(Entity, Edge)

NodeSet(Node, Node, ...)

owns

excludes

Resource

Model

scala.collection.immutable.Map[Key, NodeSet]

Function

UserStory

Interface

Spec[String]

Gist[String]

Status[Level]

Submodel[Model]

Constraints[Vector[Constr[Any]]

Prio[Int]

Design

precedesBenefit[Int]

Cost[Int]

Order[Int]

inherits

requires

helps

hurts

Abstract

Type

subtype

assigns[Attribute]

Quality

...

...

... ...

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT’s all entities, attributes and relations (v2.3RC1)

Entities:
Context
Product, Release,
Stakeholder, Actor,
Resource, Subdomain

Requirement
Req, Idea, Goal,
Feature, Function,
Quality, Interface,
Design,
Issue, Ticket

Scenario
UserStory, UseCase,
TestCase, Task,
VividScenario

Data
Class, Member

Relations:
owns,
requires,
excludes,
releases,
helps, hurts,
precedes,
inherits,
implements,
verifies,
deprecates,
assigns

Attributes:
String values:
Gist, Spec, Why, Example,
Input, Output, Expectation,
Trigger, Precond, Frequency,
Critical, Problem, Label,
Comment, Image,
Deprecated, Code,

Level values:
Status,

Integer values:
Prio, Order, Cost, Benefit,
Capacity, Urgency,

collection values...
Submodel, Constraints

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT models can contain code and execute test cases

val m1 = Model(

TestCase("add1") has (Code("1 + 42"), Expectation("42")),

TestCase("add2") has (Code("{1 to 42}.sum"), Expectation("903")),

TestCase("mul1") has (External[Code]("filename.scala"), Expectation("true"))

)

reqT> m1.loadExternals.run

res1: scala.collection.immutable.Map[reqt.Entity,String] =

Map(TestCase(add1) -> 43, TestCase(add2) -> 903, TestCase(mul1) -> true)

reqT> (m1 / "add2").tested

res2: reqt.Model =

Model(

TestCase("add2") has (Expectation("903"), Output("903"), Code("{1 to 42}.sum"))

)

reqT> m1.loadExternals.isTestOk

*** FAILED: TestCase(add1)

Output: 43

Expectation: 42

res3: Boolean = false

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Level values of the Status attribute

SPECIFIED

ELICITED

VALIDATED

PLANNED

IMPLEMENTED

TESTED

RELEASED

DROPPED

POSTPONED

up

up

up

up

up

up

FAILED

up

up

up

down

init

up

down

down

down

down

down

down

down

down

down

reqT> val s = Status.init

s: reqT.Status =

Status(ELICITED)

reqT> s.up

res1: reqT.Status =

Status(SPECIFIED)

reqT> s.down

res2: reqT.Status =

Status(DROPPED)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT update of Status attribute

reqT> var m = Model(Feature("x") has Status.init, Feature("y") has Status.init)

m: reqT.Model =

Model(

Feature("x") has Status(ELICITED),

Feature("y") has Status(ELICITED)

)

reqT> m.up

res8: reqT.Model =

Model(

Feature("x") has Status(SPECIFIED),

Feature("y") has Status(SPECIFIED)

)

reqT> m = (m / Feature("x")).up ++ (m \ Feature("x"))

m: reqT.Model = Model(

Feature("x") has Status(SPECIFIED),

Feature("y") has Status(ELICITED)

)

reqT> m = m up Feature("x") //equivalent shorter way to do previous

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT models can be hierarchical
with recursive submodels in a tree structure

var myReqs = Model(

Feature("nice") has Spec("this is a nice feature"),

Feature("cool") has Spec("this is a cool feature"),

Stakeholder("Tony") has Submodel(

Feature("nice") has Prio(1),

Feature("cool") has Prio(2)

),

Stakeholder("Annabella") has Submodel(

Feature("nice") has Prio(2),

Feature("cool") has Prio(1)

)

)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT can reference values of attributes in deeply
nested submodel structures using the ! operator

(Feature("f")!Prio)

(Stakeholder("a")!Feature("g")!Benefit)

val m = Model(

Feature("f") has Prio(1),

Stakeholder("a") has Submodel(

Feature("g") has Benefit(2),

Resource("x") has Submodel(

Feature("h") has Cost(3)

)

)

)

m(Feature("f")!Prio) == 1

m(Stakeholder("a")!Feature("g")!Benefit) == 2

m(Stakeholder("a")!Resource("x")!Feature("h")!Cost) == 3

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT context description example

You can use reqT with your favourite RE text book.

Model(

Product("Hotel system") owns (

Interface("ReceptionUI"), Interface("GuestUI"),

Interface("TelephonyAPI"), Interface("AccountingAPI")

),

Product("Hotel system") has Image("context-diagram.png"),

Interface("ReceptionUI") has (

Input("booking, check-out"), Output("service note"),

Image("receptionUI-screen.png")

),

Interface("GuestUI") has (

Output("confirmation, invoice"),

Image("guestUI-screen.png")),

Actor("Receptionist") requires Interface("ReceptionUI"),

Actor("Guest") requires Interface("GuestUI"),

Actor("Receptionist") requires Interface("ReceptionUI"),

Actor("Telephony System") requires Interface("TelephonyAPI"),

Actor("Accounting System") requires Interface("AccountingAPI")

)

[Example modified from Lauesen: Software Requirements – Styles and Techniques]

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT task description example

Model(

Task("reception work") owns (Task("check in"), Task("booking")),

Task("check in") has (

Why("Give guest a room. Mark it as occupied. Start account."),

Trigger("A guest arrives"),

Frequency("Average 0.5 checkins/room/day"),

Critical("Group tour with 50 guests.")

),

Task("check in") owns (

Task("find room"), Task("record guest"), Task("deliver key")),

Task("record guest") has Spec(

"variants: a) Guest has booked in advance, b) No suitable room"

)

)

[Example modified from Lauesen: Software Requirements – Styles and Techniques]

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT quality requirements example

Model(

Quality("capacity database") has

Spec("#guests < 10,000 growing 20% per year, #rooms < 1,000"),

Quality("accuracy calendar") has

Spec("Bookings shall be possible at least two years ahead."),

Quality("performance forecast") has

Spec("Product shall compute a room occupation forecast

within ___ minutes. (Customer expects one minute.)"),

Quality("usability task time") has

Spec("Novice users shall perform tasks Q and R in 15 minutes.

Experienced users tasks Q, R, S in 2 minutes."),

Quality("usability task time") requires (Task("Q"), Task("R"), Task("S"))

Quality("performance peak load") has

Spec("Product shall be able to process 100 payment transactions

per second in peak load.")

)

[Example modified from Lauesen: Software Requirements – Styles and Techniques]

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT QUPER example

Model(

UserStory("playMusic") has Spec("As a user I want to play music."),

UserStory("playMusic") requires Quality("timeToMusic"),

Quality("performance") owns (Quality("timeToMusic"), Quality("timeToVideo")),

Quality("timeToMusic.metric") has Spec("Measured in seconds using tests XYZ."),

Quality("timeToMusic.ref.X") has (Spec("4.0 s"), Comment("Competitor product X.")),

Quality("timeToMusic.ref.Y") has (Spec("2.0 s"), Comment("Competitor product Y.")),

Quality("timeToMusic.ref.Z") has (Spec("3.0 s"), Comment("Our own released product Z.")),

Quality("timeToMusic.utility") has Spec("5.0 s"),

Quality("timeToMusic.differentiation") has Spec("1.5 s"),

Quality("timeToMusic.saturation") has Spec("0.2 s"),

Quality("timeToMusic.barrier.1") has Spec("2.0 s requires Effort(Range(4,5),Weeks)"),

Quality("timeToMusic.barrier.2") has Spec("1.0 s requires Effort(Range(24,48),Weeks)"),

Quality("timeToMusic.target.min") has (Spec("2.0 s"), Comment("Probably possible with existing architecture.")),

Quality("timeToMusic.target.max") has (Spec("1.0 s"), Comment("Probably needs new architecture.")),

Quality("timeToMusic") has Image("QUPER-timeToMusic.jpg")

)

Example modified from "Setting quality targets for coming releases with QUPER: an industrial case study", R. Berntsson Svensson, Y. Sprockel, B.
Regnell, S. Brinkkemper, Requirements Engineering, November 2012, Volume 17, Issue 4, pp 283-298

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT some example operations on Models

To do this... ...code this...

Create empty model var m = Model()

Add entity with one attribute 1 m += Feature("hello") has Spec("print da stuff")

Add entity with two attributes m += Feature("f1") has (Gist("g1"), Spec("s1"))

Overwriting existing attribute m += Feature("f1") has Gist("g2")

Add an owns-relation 2 m += Product("p1") owns (Feature("f1"), Feature("hello"))

Remove an entity 3 var m2 = m - Feature("f1")

Restrict operator m / Feature("f1")

m / Feature

m / Spec

m / Context

m / Feature / Gist

Restrict to destinations m /-> Feature("f1")

Extended restrict adds destinations m /+ Feature("f1")

Depth first search m /--> Product("p1")

1
m += x is the same as m = m + x

2
owns is a special relation: an entity can only have one direct owner

3
all operations are immutable; new model is created

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT set operations, complement to restrictions, etc.

To do this... ...code this...

Partition var (mx, my) = m | Feature

var (mx, my) = m |+ Feature

var (mx, my) = m |-> Feature

var (mx, my) = m |--> Feature

Aggregate mx ++ my

Difference mx -- my

Intersect mx & my

Exclude m \ Feature("f1")

Other Complement operators m \-> Feature("f1")

m \+ Feature("f1")

m \--> Feature("f1")

Add same attribute to all entities m + Gist("same same")

Remove all Gist attributes m - Gist

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

Release Planning in Software Develepment

[Ruhe et al.]

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

Why Constraint Solving in Requirements Engineering?

Some potential benefits of CSP in RE:
I Flexible specification of decision problems

I Prioritization
I Release Planning

I Interactive exploration of the solution space

I Out-of-the-box optimization support

Some challenges:

I How to integrate CSP with RE technology and make it user
friendly in the domain?

I How to model CSP problems at the right abstraction level
given great uncertainties?

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

Constraint-based Priority Ranking example:
5 features ranked from 1 to 5

reqT:

val n = 5

var f = vars(n, "f")

val Result(conclusion, nSol, sol, _ , _) =

Constraints(

f::{0 until n},

AllDifferent(f),

f(0) #> f(1),

f(1) #> f(2),

f(2) #< f(3),

forAll(0 until n) { f(4) #>= f(_) }

).solve(Satisfy)

MiniZinc:

int: n = 5;

array[1..n] of var 1..n: f;

constraint

alldifferent(f);

constraint f[1] > f[2];

constraint f[2] > f[3];

constraint f[3] < f[4];

constraint

forall (i in 1..n)

(f[5] >= f[i]);

solve satisfy;

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT CSP: parameters to solve

Objective parameter

Satisfy find one solution (if any)
CountAll count the number of solutions
FindAll record all solutions
Maximize(Var("x")) find the solution (if any) that is optimal
Manimize(Var("x"))

Other optional parameters

timeOutOption limits the time of the search (seconds)
solutionLimitOption limits the number of solutions recorded
valueSelection selects starting values of variables
variableSelection selects which variables to start with
assignOption selects which variables to assign values

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Entities can have a Constraints attribute
containing a sequence of constraints.

var myReqs = Model(

Feature("nice") has Spec("this is a nice feature"),

Feature("cool") has Spec("this is a cool feature"),

Stakeholder("Anna") has Constraints(

(Feature("nice")!Prio) #< 10,

(Feature("nice")!Prio) #>= 1,

(Feature("cool")!Prio)::{2 to 7}

),

Stakeholder("Martin") has Constraints(

(Feature("nice")!Prio) #< 3,

(Feature("nice")!Prio) #!= 1,

(Feature("cool")!Prio)::{5 to 10}

)

)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Input Data Model

val m = Model(

Stakeholder("kalle") has (Prio(10), Submodel(

Feature("F1") has Benefit(20),

Feature("F2") has Benefit(20),

Feature("F3") has Benefit(20)

)),

Stakeholder("stina") has (Prio(20), Submodel(

Feature("F1") has Benefit(5),

Feature("F2") has Benefit(15),

Feature("F3") has Benefit(35)

)),

Resource("developer") has Submodel(

Release("a") has Capacity(100),

Release("b") has Capacity(100),

Feature("F1") has Cost(10),

Feature("F2") has Cost(70),

Feature("F3") has Cost(20)

),

Resource("tester") has Submodel(

Release("a") has Capacity(100),

Release("b") has Capacity(100),

Feature("F1") has Cost(40),

Feature("F2") has Cost(10),

Feature("F3") has Cost(50)

),

Release("a") has Order(1),

Release("b") has Order(2)

)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning: Vectors of Input Entities
to prepare imposed constraints

val features = (m.flatten / Feature).sourceVector

val releases = (m / Release).sourceVector

val resources = (m / Resource).sourceVector

val stakeholders = (m / Stakeholder).sourceVector

val constraints = ??? // to be defined

val utility = ??? // to be defined

val (m2, r) = Model().impose(constraints).solve(Maximize(utility))

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning: Assign values from Model

The XeqC constraint can be constructed by the #== infix operator on
Var. Example of how to make a sequence of constraints that
grounds integer variables to release planning input data from a
model:

def assignValuesFromModel(m: Model) = Constraints(

forAll(stakeholders) { s => Var(s!Prio) #== m(s!Prio) } ++

forAll(releases) { r => Var(r!Order) #== m(r!Order) } ++

forAll(stakeholders, features) {

(s,f) => Var(s!f!Benefit) #== m(s!f!Benefit) } ++

forAll(resources, features) {

(res, f) => Var(res!f!Cost) #== m(res!f!Cost) } ++

forAll(resources, releases) {

(res, r) => Var(res!r!Capacity) #== m(res!r!Capacity) }

)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 1(9)

All Features shall have an Order integer attribute to model that it
can be allocated to some Release (corresponding to the Order
attribute of that Release).

forAll(features) { f => (f!Order)::{1 to releases.size} }

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 2(9)

For all stakeholders s and all features f:
Var(benefit(s,f)) is the benefit of the feature according to that
stakeholder multiplied with the priority of the stakeholder.

forAll(stakeholders, features) { (s, f) =>

(s!f!Benefit) * (s!Prio) #== Var(s"benefit($s,$f)")

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 3(9)

For all features f:
Var(benefit(f)) is equal to the sum of all stakeholders’ benefits of
that f

forAll(features) { f =>

sumForAll(stakeholders)(s => Var(s"benefit($s,$f)")) #==

Var(s"benefit($f)")

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 4(9)

for all releases r, for all features f:
if f is allocated to r then benefit(r , f)) = benefit(f)
else benefit(r , f)) = 0

forAll(releases, features) { (r, f) =>

IfThenElse(Var(f!Order) #== (r!Order),

Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),

Var(s"benefit($r,$f)") #== 0)

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 5(9)

For all releases r:
totBenefit(f) is the sum of all features’ benefits of that r

forAll(releases) { r =>

sumForAll(features)(f => Var(s"benefit($r,$f)")) #==

Var(s"totBenefit($r)")

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 6(9)

For all releases rel, for all features f, for all resources res:
If f is allocated to rel then cost(rel, f, res) is the cost of that
feature needed by that resource, else it is zero.

forAll(releases,features, resources) { (rel, f, res) =>

IfThenElse((f!Order) #== (rel!Order),

Var(s"cost($rel,$f,$res)") #== (res!f!Cost),

Var(s"cost($rel,$f,$res)") #== 0)

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 7(9)

For all resources res, for all releases rel, for all features f:
totCost(rel, res) is the sum over all features of cost(rel, f, res)

forAll(resources, releases) { (res, rel) =>

sumForAll(features)(f => Var(s"cost($rel,$f,$res)")) #==

Var(s"totCost($rel,$res)")

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 8(9)

For all resources res, for all releases rel:
totCost(res, rel) must be lest than or equal to the available capacity

forAll(resources,releases) { (res, rel) =>

Var(s"totCost($rel,$res)") #<= (res!rel!Capacity)

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Constraints 9(9)

For all releases, for all resources:
the total cost of release is the sum of the totalCost of all resources
for that release

forAll(releases) { rel =>

sumForAll(resources)(res => Var(s"totCost($rel,$res)")) #==

Var(s"totCost($rel)")

}

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning: All 9 Constraints

val releasePlanningConstraints = Constraints(
forAll(features) { f => (f!Order)::{1 to releases.size} } ++
forAll(stakeholders, features) { (s, f) =>
(s!f!Benefit) * (s!Prio) #== Var(s"benefit($s,$f)") } ++

forAll(features) { f =>
sumForAll(stakeholders)(s => Var(s"benefit($s,$f)")) #== Var(s"benefit($f)") } ++

forAll(releases, features) { (r, f) =>
IfThenElse((f!Order) #== (r!Order),
Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),
Var(s"benefit($r,$f)") #== 0) } ++

forAll(releases) { r =>
sumForAll(features)(f => Var(s"benefit($r,$f)")) #== Var(s"totBenefit($r)") } ++

forAll(releases,features, resources) { (rel, f, res) =>
IfThenElse((f!Order) #== (rel!Order),
Var(s"cost($rel,$f,$res)") #== (res!f!Cost),
Var(s"cost($rel,$f,$res)") #== 0) } ++

forAll(resources, releases) { (res, rel) =>
sumForAll(features)(f => Var(s"cost($rel,$f,$res)")) #== Var(s"totCost($rel,$res)") } ++

forAll(resources,releases) { (res, rel) =>
Var(s"totCost($rel,$res)") #<= (res!rel!Capacity) } ++

forAll(releases) { rel =>
sumForAll(resources)(res => Var(s"totCost($rel,$res)")) #== Var(s"totCost($rel)") }

)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning Optimization

val constraints =

assignValuesFromModel(m) ++

releasePlanningConstraints

val utility = Var("totBenefit(Release(a))")

val (m2, r) =

Model().impose(constraints).solve(Maximize(utility))

reqT> val allocationModel = m2 / Feature

allocationModel: reqt.Model =

Model(

Feature("F3") has Order(1),

Feature("F1") has Order(2),

Feature("F2") has Order(2)

)

reqT> val cost = r.lastSolution(Var("totCost(Release(a))"))

cost: Int = 70

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

reqT Release Planning:
Adding coupling and precedence constraints

Coupling: Two features must be in the same release:

(Feature("F1")!Order) #== (Feature("F2")!Order)

Precedence:
One features must be implemented before another feature:

(Feature("F2")!Order) #< (Feature("F3")!Order)

Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

Model(

Stakeholder("SiREN geek") requires Quality("feedback")

)

Conclusions and Discussion
Some results so far:

I Graph-oriented DSL for requirements embedded in Scala in place
I Entities, attributes and relations implemented for some (the most?) essential RE concepts
I Web document generation
I Export/import to spread sheet programs
I Integration with testing
I Integration with constraint solving for prioritization and release planning

Outlook on future work:
I Combining support for the QUPER model for QR with CSP
I Utilize research results in Natural Language Processing for RE
I Interface to visual graph generators
I Documentation and teaching material
I Product Line Engineering concepts and constraints of PLE feature models
I More complete implementation of JaCoP 4.0 constraints
I GUI support (MSc Thesis: Oskar Präntare & Joel Johansson)
I Investigation of how to utilize cutting-edge constraint solving technology:

I Soft constraints
I Stochastic constraints

Early adopters, contributers, independent assessments and feedback are sincerely welcome!

http://reqT.org
Björn Regnell, Lund University reqT.org – Tutorial @ Siren2013

http://reqT.org

